Pivoted Cholesky decomposition by Cross Approximation for efficient solution of kernel systems
نویسندگان
چکیده
Large kernel systems are prone to be ill-conditioned. Pivoted Cholesky decomposition (PCD) render a stable and efficient solution to the systems without a perturbation of regularization. This paper proposes a new PCD algorithm by tuning Cross Approximation (CA) algorithm to kernel matrices which merges the merits of PCD and CA, and proves as well as numerically exemplifies that it solves large kernel systems two-order more efficiently than those resorts to regularization. As a by-product, a diagonal-pivoted CA technique is also shown efficient in eigen-decomposition of large covariance matrices in an uncertainty quantification problem.
منابع مشابه
Efficient approximation of random fields for numerical applications
SUMMARY This article is dedicated to the rapid computation of separable expansions for the approximation of random fields. We consider approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. Especially, we provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms ...
متن کاملSome Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کاملA Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices
Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...
متن کاملSparse spectral clustering method based on the incomplete Cholesky decomposition
A new sparse spectral clustering method using linear algebra techniques is proposed. This method exploits the structure of the Laplacian to construct its approximation, not in terms of a low rank approximation but in terms of capturing the structure of the matrix. The approximation is based on the incomplete Cholesky decomposition with an adapted stopping criterion, it selects a sparse data set...
متن کاملLAPACK-Style Codes for Pivoted Cholesky and QR Updating
Routines exist in LAPACK for computing the Cholesky factorization of a symmetric positive definite matrix and in LINPACK there is a pivoted routine for positive semidefinite matrices. We present new higher level BLAS LAPACK-style codes for computing this pivoted factorization. We show that these can be many times faster than the LINPACK code. Also, with a new stopping criterion, there is more r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.06195 شماره
صفحات -
تاریخ انتشار 2015